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The paper examines the impact of production risk on a producer's optimal input 
decisions. Whether producers use more or fewer inputs in a yield-risky environment 
depends on the sign of the marginal risk premium, which is determined by risk 

preferences and technology. I present the weakest condition on technology that is 
sufficient to sign the marginal risk premium for all risk-averse preferences. If this 
condition fails to hold, the marginal risk premium is not of the same sign for all risk 
averters. Results are used to explore the properties of an estimated technology. 
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The principal question that this paper addresses 
is how does production uncertainty affect opti- 
mal input decisions? As is well known, risk- 
averse decision rules differ from risk neutral 
choices because of the existence of a marginal 
risk premium, which is the wedge between in- 
put cost and expected marginal product at the 
optimum level of input use. The sign of the mar- 
ginal risk premium indicates whether risk-averse 
producers use more or fewer inputs than risk- 
neutral producers. In general, the sign depends 
on risk preferences and technology. Because the 
latter is observable and often measurable, it is 
useful to work out the implications for optimal 
input choices using properties of the technol- 
ogy, while relying as little as possible on infor- 
mation about preferences. The present paper 
discovers the weakest condition on the technol- 
ogy sufficient to sign the marginal risk premium 
for all risk-averse preferences. 

Previous results (MacMinn and Holtmann, 
Pope and Kramer) have been obtained using 
production function representations. Output is a 
function of a single input and a random shock. 
In such a setup, the marginal risk premium is of 
the same sign as the covariance between mar- 
ginal utility and marginal product. Because mar- 
ginal utility is decreasing for risk-averse pref- 
erences, a sufficient condition for signing the 
marginal risk premium is monotonicity of the 

marginal product in the output shock. The suf- 
ficient condition on technology discovered here 
is weaker than such a monotonicity restriction 
and therefore applicable to a greater range of 
technologies. Moreover, it cannot be weakened 
any further as it is also a necessary condition 
for the marginal risk premium to be of the same 
sign for all concave utility functions. 

I also provide an economic interpretation of 
the above necessary and sufficient condition. The 
condition, it turns out, is equivalent to requiring 
that an input be either risk-increasing or risk- 
decreasing. My definition of risk-increasing and 
risk-decreasing inputs is derived from the 
Rothschild and Stiglitz definition of increasing 
risk and is therefore different from that of Pope 
and Kramer. 

My principal result thus proves that, for all 
risk averters, marginal risk premium is positive 
(negative) if and only if the input is risk-increas- 
ing (decreasing). It follows that, if the input is 
neither risk-increasing nor risk-decreasing, the 
marginal risk premium is not of the same sign 
for all risk averters. For such situations, the pa- 
per derives a sufficient condition on technology 
which signs the marginal risk premium for the 
restricted class of concave utility functions with 
convex marginal utility. 

Finally, I illustrate the use of the theoretical 
conditions in an empirical example. This is done 
with the help of the conditional distribution 
functions which Taylor estimated for corn and 
cotton on the basis of an experimental fertilizer 
response data set first used by Day. In this ex- 
ample, the monotonicity restrictions completely 
fail to sign the marginal risk premium, and it is 
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necessary to make use of the weaker condition 
discovered here. Even then, there are instances 
where the input fails to be risk-increasing or risk- 
decreasing. In such cases, the properties of the 
estimated technology are further examined for 
the purpose of signing the marginal risk pre- 
mium for risk averters with convex marginal 
utility. 

All proofs are collected together in the ap- 
pendix. 

Risk Aversion and Optimal Input Choice 

Output q is assumed to be a random variable 
with a conditional cumulative density function 
F(q, x), where x is a vector of inputs.' Let xi 
be the ith element of the input vector x. Here, 
F is assumed twice differentiable in xi and q and, 
in particular, the partial derivatives Fq, F,,, Fqq, 
and Fx,q exist. Also, it is assumed that for all 
input applications the support of the distribution 
function F is contained in a compact interval [qo, 
qm]; that is, F(qo, x) = 0 and F(q,, x) = 1 for 
all input vectors x. It follows that the gradient 
vectors Fx(qo, ") 

and Fx(qm, ") 
are each row vec- 

tors with zeros everywhere. For output levels 
between the two end points of q0 and qm, I as- 
sume Fx,(q, x) < 0, that is, increasing input use 
leads to a superior output distribution in the sense 
of first degree stochastic dominance.2 

If w is a vector of input prices and output price 
is normalized at unity, applying inputs x yields 
profit rr(q, x) = q - w'x. The optimal input 
vector is found by maximizing the expected util- 
ity of profit, where utility is assumed increasing 
and concave. 

Let RP be the risk premium that a risk-averse 
producer is willing to pay for removing all un- 
certainty in output. Because the output distri- 
bution is conditional on input use, RP is a func- 
tion of input vector x. Further, RP satisfies 

EU[rr(q, x)] = U [Err(q, x) - RP(x)]. Maxi- 
mizing expected utility is equivalent to maxi- 
mizing the certainty equivalent; namely, ex- 
pected profit net of the risk premium. Letting 
x* be the optimal input application, the first- 
order condition to the latter problem is 

(Err)x, - RPx,(x*) = 0 

or -Wi + f(q - 
w'x*)Fqx,(q, 

x*)dq = RPx,(x*) 

or 
frr(x*)Fqx,(q, 

x*)dq = wi + RPx,(x*). 

Here, RP,, known as the marginal risk premium 
for input i (Pope and Kramer, MacMinn and 
Holtmann) is the wedge between input cost and 
expected marginal product at the optimum level 
of input use. If the producer is risk-neutral, the 
marginal risk premium is zero. For risk-averse 
preferences, the marginal risk premium is non- 
zero and its sign is given by proposition 1 be- 
low. 

The following notation is useful for stating the 
result. Let t(q, x) = Fx,(q, x)/Fq(q, x) - 

E[Fx(q, x)/Fq(q, x)], and T(q, x) = fqqt(y, 
x)Fqdy. 

PROPOSITION 1: For all concave utility func- 
tions 

RPx,(x*) 
is strictly positive (negative) if and 

only if 

(1) T(q, x*) ? (-) Ofor all q E (qo, q,). 

Inequality (1) is a necessary and sufficient 
condition for the marginal risk premium to be 
of uniform sign for all risk-averse utility func- 
tions. Furthermore, because (1) represents a 
condition on the distribution function, it is the 
weakest condition on technology that signs the 
marginal risk premium for all risk-averse pref- 
erences.3 The next section considers an eco- 
nomic interpretation of (1) in terms of the im- 
pact of input use on output variability. 

Inequality (1) may be implied by stronger re- 
strictions on technology. It is useful to state one 
such restriction because of its value in empirical 
illustration and in allowing comparisons of (1) 
with earlier work. 

PROPOSITION 2: T (q, x) 
(-) 

0 for all q, if 
t (q, x) has one root over its output domain (say, 
q1) such that 

t(q, x) = 
Fx, (q, x)/Fq(q, x) 

- E(Fx,(q, x)/Fq(q, x)) > (<) O for q E (q0, q1) 

and 

t(q, x) = Fx, (q, x)/Fq(q, x) 
- E(Fx,(q, x)/F,(q, x)) 

< (>) 0 for q E (qi, qm). 

Notice that the above condition is always sat- 

1 For convenience, notation F(q; x) has been used instead of F(qlx) 
to denote the conditional distribution function. Because x is not a 
random variable, F(q, x) should not be interpreted as a joint dis- 
tribution. 

2 If the conditional distribution function F is induced by an un- 
derlying production function of the form z(x, 0), where 0 is the 
random shock, then Fx < 0 is equivalent to the assumption of pos- 
itive marginal productivity; that is, zx(, 0) > 0 for all 0. 

3 The exception is when optimal risk-averse input choice x* = 
0. Then the marginal risk premium is negative when T(q, x) 5 0 
for all q, but it could be of either sign if T(q, x) O0 for all q. 
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isfied if 
Fx,(q, x)/Fq(q, x) is monotonic decreas- 

ing (increasing) in q. 

Relationship to Earlier Findings 

The sufficiency part of proposition 1 generalizes 
earlier results. MacMinn and Holtmann, and Pope 
and Kramer have examined conditions sufficient 
to sign the marginal risk premium for risk-averse 
preferences. Both these papers use a production 
function representation of the stochastic tech- 
nology. Let q = z(x, 0), where z is the produc- 
tion function and 0 the random output shock. 
The principal result is the following. If z, , is 
positive (negative) for all 0 and for some range 
of input values containing the optimum, the 
marginal risk premium is positive (negative) for 
input i. In this way, knowledge of production 
function characteristics can be used to predict 
departures from risk-neutral input use. The re- 
sult is, however, a special case of proposition 
1, and the marginal risk premium can be signed 
in more general circumstances. 

It can be shown4 that if the conditional dis- 
tribution function F(q, x) is induced by a sto- 
chastic production function z(x, 0) with z, > 0, 
then F,,I/Fq - E[F,I/Fq] is greater than, equal 
to, or less than zero as 

zx, 
- E?[zj,] is less than, 

equal to, or greater than zero, where the super- 
script on E indicates the variable over which ex- 
pectations are taken. A stronger version of this 
result, which is also true, is that monotonicity 
of 

zx, 
in 0 implies monotonicity of Fx,/Fq in q 

but in the opposite direction. Now consider hy- 
pothetical figures 1 and 2 below. In figure 1, 

zx, 
is an increasing function of 0. This means 

Fx,/Fq is a decreasing function of q. But by 
proposition 2, T(q, x) > 0 for all q, and hence 
the marginal risk premium is positive. This is 
the result of MacMinn and Holtmann, and Pope 
and Kramer. In figure 2, on the other hand, it 
is not possible to sign the marginal risk pre- 
mium using a monotonicity condition on 

zx,. 
But 

because zx, - E?[zi] has one sign change from 
negative to positive, FxFq - 

Eq[Fx,/Fq] 
has also 

one sign change from positive to negative. This 
means, by proposition 2, that T(q, x) > 0 for 
all q, implying the marginal risk premium is 
positive. Proposition 2 can therefore sign the 
marginal risk premium in more instances than 
do the monotonicity conditions of earlier work. 
Of course, the sufficient condition of proposi- 
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Figure 1. Monotone marginal product 

tion 2 is in turn a stronger restriction than the 
condition in proposition 1. 

Inequality (1) cannot be weakened further ac- 
cording to the necessity part of proposition 1. 
This result has so far not been known or proved. 
The implication is that if T(q, x*) fails to be of 
uniform sign over its domain, the marginal risk 
premium is also not of uniform sign for all risk- 
averse utility functions. In other words, the sign 
of the marginal risk premium may change with 
the choice of the utility function even within the 
class of concave functions. This is a disturbing 
result for empirical work, which often assumes 
a specific utility functional form. One may 
therefore wish to discover subsets of the class 
of concave utility functions for which the mar- 
ginal risk premium is of uniform sign, even when 
condition (1) fails. The problem is considered 
below for an empirically important subclass of 
concave utility functions. 

.4) 

,, E[zx~x,0]] 
- 

o 
L 

,, 

L 

theta 

Figure 2. Nonmonotone marginal product 4 A proof is available from the author on request. 
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Risk-Increasing and Risk-Decreasing 
Inputs: An Interpretation 

This section advances a definition of risk-in- 
creasing and risk-decreasing inputs which, al- 
though different from the definition proposed by 
Pope and Kramer, is consistent with the notion 
of increasing risk discussed by Rotchschild and 
Stiglitz. It will then be seen that (1) is precisely 
the condition for an input to be risk increasing 
or risk decreasing. 

Following Rothschild and Stiglitz, the paper 
considers one output distribution to be more 
variable (riskier) than another if they have the 
same mean and if the riskier distribution has more 
weight in its tails. An increase in input use, 
however, increases mean output. To compare 
distributions with the same mean, consider the 
distribution of output deviation from its mean. 
If q(x) is mean output, let h = q - q(x). The 
output mean deviation h has zero mean at all 
input levels. However, because h is a linear 
transformation of q, its distribution is identical 
to that of q in all other respects. If F(h, x) is 
the cumulative density of h, then F(q, x) = F(h, 
x) for all q and x. An input is defined to be risk 
increasing (or risk decreasing) if it increases (or 
decreases) the variability of the deviations from 
output mean. More formally, we have the fol- 
lowing definition5: 

DEFINITION: The ith input is risk-increasing 
(decreasing) at x0 if 

(2) rf [ h(q, x0), xo]dq = 0 
qo 

and 

(3) ix,[h(y, x0), xo]ldy 2 

(5) 0 for all q E (qo, qm) 

where h(q, x) = q - q(x) and q(x) = fSJqFq(q, 
x)dq. 

The condition in (2), which requires that the 
expected value of h be invariant to changes in 
input level, is satisfied by construction. The 
definition essentially amounts to the second 
condition in (3), which states that an increase in 
input use always leads to a distribution of de- 

viations from output mean with more (or less) 
weight in its tails. We now show that (1) is merely 
another form of (3). 

Because F(q, x) = F(h, x) for all q and x, 
Fq(q, x) = Fh(h, x)hq(q, x) = Fh(h, x) and Fx,(q, 
x) = Fh(h, x)h,,(q, x) + Fx,(h, x). This implies 

(4) Fxi(h, x) = Fx,(q, x) - Fh(h, x)hk,(q, x) 
= Fx,(q, x) + Fq(q,x)qx,(x). 

But mean output is q = f qFq(q,x)dq. Inte- 
grating by parts, q = qm 

- fqo" F(q, x)dq. Hence 
= -fFx,(q, x)dq = -fq"[Fx,(q, x)/Fq(q, 

x)]Fq(q, x)dq = - E[Fxi/Fq]. 
Substituting for 

tx, 
in (4) and substituting (4) 

into (3), an input is risk-increasing at x0 if 

(5) Fx,(y, x0) 

- Fq(y,xo)E[Fx,(q, Xo)/Fq(q, x0)]}dy ? (5) 0 for all q E (q0, qm) 

Using the notation of t(q, x) and T(q, x) intro- 
duced earlier, (5) becomes 

fqqot(y, xo)Fqdy ? (?) 0 for all q 
E (qo, qm) or T(q, xo) ? (5) 0 for all q, 

which is, of course, the condition in (1). Hence, 
a restatement of proposition 1 is 

PROPOSITION 1*: For all concave utility func- 
tions, the marginal risk premium for input i is 
strictly positive (or negative) if and only if input 
i is risk increasing (or risk decreasing) at the 
optimum level of input use. 

Thus, the definition of risk-increasing and risk- 
decreasing inputs proposed here provides an 
economic interpretation of proposition 1. The 
result is useful because it relates a purely tech- 
nological characteristic of inputs (as to how they 
affect output variability) to their use according 
to risk preferences. But proposition 1"* also proves 
the converse, namely that an input is risk in- 
creasing (decreasing) if the marginal risk pre- 
mium is positive (negative). In Pope and Kra- 
mer, on the other hand, an input is defined to 
be risk increasing (decreasing) if the marginal 
risk premium is positive (negative). Proposition 
1* can therefore be used as the basis for a Pope 
and Kramer definition if a primitive definition 
of risk-affecting inputs is in terms of the con- 
dition in (1). 

Finally, the condition in (1) admits of one more 
interpretation. If (1) is satisfied, it means that 
the distributions of deviations from output mean 
can be ranked in the sense of second degree sto- 

5 The Rothschild-Stiglitz definition of increasing risk compares 
two distributions. In this paper, however, x parameterizes a family 
of distributions F(q, x) and the definition is modified accordingly 
(see Diamond and Stiglitz). 
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chastic dominance. Increases in risk-increasing 
inputs lead to less preferred distributions while 
increases in risk-decreasing inputs lead to more 
preferred distributions. 

Further Assumptions on Preferences or 
Technology 

As noted earlier, if T(q, x) changes sign over 
its output domain, that is, if the input is neither 
risk-increasing nor risk-decreasing, the sign of 
the marginal risk premium depends on the util- 
ity function. However, the marginal risk pre- 
mium may still be of the same sign for a subset 
of the class of concave utility functions. An em- 
pirically important class of functions are those 
with convex marginal utility because they in- 
clude all decreasing and constant risk-averse 
utility functions. 

PROPOSITION 3: The marginal risk premium of 
input i is strictly positive (negative) for all risk- 
averse agents with convex marginal utility if 

(6) 

JOT(y, x*)dy 2 
(-) 

Ofor all q in 
(qo, 

q,. 

Condition (6) is implied by (1) but the con- 
verse is not true. Thus, by restricting the set of 
utility functions, a weaker condition on tech- 
nology is obtained. If preferences are further re- 
stricted to satisfy linear marginal utility (namely, 
quadratic utility functions), the sufficient con- 
dition is even weaker than (6). In this case, the 
marginal risk premium is strictly positive (neg- 
ative) if f; T(q, x*)dq > (<) 0. 

An economic interpretation of (6) is that an 
increase in input use leads to a less preferred (or 
more preferred) output distribution according to 
third degree stochastic dominance. Seen this way, 
the relationship of (6) to (1) is obvious. 

Technology 

A functional form popular in the econometric 
estimation of production functions is to let q(x, 
0) = p(x) + o-(x)0, where 0 is normally dis- 
tributed with mean zero and unit variance (Just 
and Pope, Buccola and McCarl). This implies 
that output q is normally distributed with a mean 
,u and variance 

0", 
where both are conditional 

on x. In this case, verification of (1) is partic- 
ularly simple. 

Because the area under the normal curve is 
equal to the corresponding area under the stan- 
dard normal curve, 

F(q, x) = F(z, x) 
1 q- p(x) f _ exp(-k2/2)dk, where z = 

o(x) 

and Fx,/Fq = [(1 /\ / )exp(-z2/2)z,,)]/ 

[(1//V\) exp(-z2/2)] = 
z=, 

Now 
zx,= -[[o-x(x)(x)]/o - ox,[q - A(x)]/o 

= -(~xi + 
OZ)/l 

Hence t(q, x) = Fx,/Fq - E(Fx,/Fq) 

S-(A, + 
oXiZ)/o 

+ xi/- 
= / 

--'iZ/ 
and T(q, x) = 

-((x,/r) 
k_ exp(-k2/2)dk. 

But the quantity inside the integral has a max- 
imum value of zero when the upper limit is plus 
infinity. Hence T has the same sign as o-,. In 
other words, an input is risk increasing (or risk 
decreasing) if it increases (or decreases) the 
variance of output. This result can also be seen 
directly from the fact that the variance of de- 
viations from mean output is also the variance 
of output. 

An Empirical Illustration 

This section presents the results of an empirical 
investigation into the properties of certain esti- 
mated conditional distribution functions. My 
objective is to sign the marginal risk premium 
for the estimated technology. The exercise uses 
Taylor's estimates of conditional distribution 
functions for corn and cotton. Taylor employed 
a well known data set of experimental fertilizer 
response first used by Day to estimate the Pear- 
son system of yield probability density func- 
tions. Later, Just and Pope used the same data 
set to estimate the marginal effects of fertilizer 
use on output variance. The data consist of corn 
and cotton yield response to 7 levels of nitrogen 
application between 0 and 45 lbs per acre at in- 
tervals of 7.5. Experiments were carried out for 
37 years between 1921 and 1957 at the Delta 
Branch of the Mississippi Agricultural Experi- 
ment Station (Grissom and Spurgeon). 

Taylor estimated a conditional cumulative 
density of the following form: F(q, x) = 0.5 + 
0.5 tanh[P(x, q)], where P(x, q) is a polynomial 
in x and q and tanh is the hyperbolic tangent 
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given by tanh(u) = (eu" - e-u)/(eu + e-u). The 
functional forms of P, estimated by Taylor, are 

P(x, q) = Jp + 2q + 3q2 + 84q3 + _5X + 6X3 
for q = cotton yield and x = nitrogen applica- 
tion rate and 

P(x, q) = p1 + 3f2q + 3q2 + 04q3 
+ Ps5 + f86qx + 87xq92 

for q = corn yield and x = nitrogen application 
rate. 

Here, Fx/Fq equals Px(x, q)/Pq(x, q) and is 
directly calculated given the parameter esti- 
mates, whereas E(Fx/Fq) is computed by nu- 
merical integration. The support of q is taken to 
be the interval between zero and the highest re- 
alization of q (for all input applications).6 Thus, 
we have t(q, x) = Fx/Fq - E[Fx/Fq] for each 
of the 7 levels of nitrogen application and for 
each of the two crops. In no case is Fx/Fq 
monotonic in q. Sufficient conditions discussed 
by MacMinn and Holtmann, and Pope and Kra- 
mer cannot therefore sign the marginal risk pre- 
mium. 

The next question is whether the technology, 
despite its nonmonotonicity, satisfies condition 
(1). We find that in the case of cotton, and for 
nitrogen applications up to 22.5 lbs per acre, 
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Figure 3b. Effect of nitrogen use (37.5 lbs/ 
acre) on the cumulative distribution of cotton 
output 

t(q, x) changes sign once from positive to neg- 
ative, as q increases from zero to its upper sup- 
port (see figure 3a). But this means T is non- 
negative for all q (proposition 2) and hence 
nitrogen is risk increasing. Beyond 22.5 lbs, 
however, t changes sign twice (figure 3b). It can 
be shown that this means the input is neither risk 
increasing nor risk decreasing; that is, T is not 
of the same sign over its output domain.7 The 
picture is reversed for corn. Here, at low levels 
of nitrogen the input is neither risk increasing 
nor risk reducing (figure 4a) while at higher rates 
(greater than or equal to 30 lbs) it becomes risk 
increasing (figure 4b). The input is risk increas- 

6 A reviewer has pointed out that the conclusions may be sen- 
sitive to this aspect of the empirical procedure. 

7 The relevant result (not proved here because of space con- 
straints) is that if t(q, x) has n finite roots over the interval (qo, q,,), 
n is necessarily odd whenever the input is risk-increasing or risk- 
decreasing. 
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ing in half of the 14 cases considered and of 
indeterminate character in the rest of the cases. 

In situations where nitrogen is neither risk-in- 
creasing nor risk-decreasing, one may use prop- 
osition 3 and condition (6) to sign the marginal 
risk premium for risk-averse decision makers with 
convex or linear marginal utility. The results in- 
dicate that, except at low levels of input use in 
corn, increasing nitrogen use leads to less pre- 
ferred output distributions ordered by third de- 
gree stochastic dominance. Hence, if the opti- 

mal input level falls in these ranges, the marginal 
risk premium is positive for producers with con- 
vex marginal utility. 

The results of all these situations are sum- 
marized in tables 1 and 2. 

Concluding Remarks 

In the literature on output variability and input 
choice, two kinds of questions are frequently 
posed: (a) what is the impact of input applica- 
tion on output variability? and (b) how are risk- 
averse input choices different from risk-neutral 
decisions? The two questions are related: those 
analyzing the first question have looked for im- 
plications by answering the second question 
(Antle and Goodger; Love and Buccola; Rou- 
masset; Smith and Umali). In a survey of the 
literature on the impact of fertilizers on output 
variability, Roumasset et al. (pp. 227) are ex- 
plicit in connecting the two issues. "First, does 
use of fertilizer increase the variability of crop 
yields? Second, is the increase (if any) in vari- 
ability large enough relative to increases in 
expected yields from nitrogen use to reduce sub- 
stantially the optimal fertilizer use under risk- 
averse preferences relative to risk neutral opti- 
mal fertilizer use?" 

Surprisingly, however, the theoretical basis 
for the presumed link between the impact of in- 
put use on output variability and optimal input 

Table 1. Sign of the Marginal Risk Premium: Cotton 

U"<0 U"'<0 
Input level (lbs) U" < 0 and U'" > 0 and U'" = 0 

0.0 + + + 
7.5 + + + 
15.0 + + + 
22.5 + + + 
30.0 ? + + 
37.5 ? + + 
45.0 ? + + 

Table 2. Sign of the Marginal Risk Premium: Corn 

U"<0 U"<0 
Input level (lbs) U" < 0 and U"' > 0 and U"' = 0 

0.0 ? ? 
7.5 
15.0 + + 
22.5 ? + + 
30.0 + + 
37.5 + + 
45.0 + + + 
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level has not been fully explored. The present 
paper has filled that gap by presenting the only 
technological characteristics relevant in deter- 
mining the impact of production risk on input 
use. 

Implications for empirical research are two- 
fold. First, by weakening the sufficient condi- 
tions to the maximum extent possible, the qual- 
itative implications for a risk-averse producer's 
optimal input use can be inferred for all esti- 
mated technologies. If the estimated technology 
violates (1), the researcher can be sure that, 
without further information on preferences, it is 
impossible to predict departures from risk neu- 
tral input levels. Second, (1) is a robustness 
condition in empirical work which, if satisfied, 
guarantees the qualitative nature of the esti- 
mated magnitude (marginal risk premium) against 
misspecification of utility function within the class 
of concave functions. If the technology fails to 
satisfy (1), (6) serves as a robustness condition 
for risk averters with convex marginal utility. 

A promising direction for future work would 
be to consider in detail the interactions between 
multiple inputs in the production process. To take 
a specific example, fertilizers could be risk in- 
creasing in the absence of irrigation but risk de- 
creasing in the presence of irrigation. Discov- 
ering such aspects of the technology and the 
conditions under which they occur is important 
for deeper understanding of technology-driven 
choices. 

[Received January 1991; final revision 
received February 1992.] 
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Appendix 

Proof of Proposition 1 

Sufficiency: The marginal risk premium of input i is 

RPi= f 7r(x*)Fqx(q, x*)dq - wi. 

Integrating by parts and recognizing that 
Fxi(qm, 

x) = F?, 
(qo, x) = 0, 

(A1) RP, = - F (q, x*)dq - w 

where x* is the solution to the following problem 
qM 

max f U(q - w'x)Fq(q, x)dq. 

The first-order condition for an interior solution is 

U(7)Fqxi(q, x*)dq - w, U'(T)Fq(q, x*)dq= 0 or 

f U(7T)Fqxi(q, x*)dq] U'(T)Fq(q, x*)dq] 
= 

wi. 

The denominator is expected marginal utility. Integrating 
the numerator by parts, the first-order condition becomes 

-[ 
f•U'()Fxi(q, 

x*)dq] EU'() = wi. L1 fO I/ 
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Multiplying and dividing the numerator by F, 

-E[U'(Tr)(F,,/Fq)]/EU'(rT) 
= wi 

or 

-E(F,/Fq) - cov[U'(.rT), F,,I/Fq]/EU(T) = wi 

But E(F,,/Fq) = fom 
Fi(q, 

x*)dq. Substituting and using 
(Al), 

(A2) RP,,(x*) = cov[U'(iT), FjFq,]/EU'(Tr) 

Because the denominator is positive, the marginal risk pre- 
mium has the same sign as the numerator, which is equal 
to 

fq 
{Fx,(q, 

x*)/Fq(q, x*) 

- 
E[Fi(q, 

x*)/Fq(q,x*)]}U'(7T)Fq(q, x*)dq. 

= t(q, x*)U'(7T)F,(q, x*)dq 

= U'(7T) t(y, x*)Fq(y, x*)dyl 

- U"(Tr) t(y, x*)Fq(y, x*)dy dq 
qO 

= [U'(Tr)T(q, x*)l m - U"(ir)T(q, x*)dq 

and because T(qo, x) = T(qm, x) = 0, we get 

(A3) RP,(x*) = - 

[f• 
"(i)T(q, 

x*)dq] 
EU'() 

which is positive for all risk averters if T(q, x*) 
- 

0 for 
all q and negative for all risk averters if T(q, x*) 

- 
0 for 

all q. 

Necessity: Suppose the marginal risk premium of input i 
is positive for all concave utility functions. Clearly, T can- 
not be negative for all q. If T is positive for all q, there is 

nothing more to prove. So suppose T(q, x*) assumes pos- 
itive and negative values over the domain of q. Then there 
exists an interval (q,, qj) such that 

(A4) f T(q, x*)dq < 0. 

But T(q, x*) also satisfies 

(A5) - Lf'"()T(q, x*)dq > 0 

for all concave U. For a quadratic utility function, this re- 
duces to 

(A6) T(q, x*)dq > 0 

Let V be a utility function such that 

(A7) 
SV, = a, + brr(q) - (c,/2)i(q) for q 

- 

qj 
V(T) = V2 = a2 + b27T(q) 

- (c2/2) (q) for qi q 
- 

q, 
V3 = a3 + b3rT(q) - (c3/2)i(q) for q 

- 
q, 

From (A3), the marginal risk premium for V is of the same 

sign as 

S 

V'()T(qx*)dq = c T(q, x*)dq 
- 

qj 
qm 

+ c2 fT(q, x*)dq] + c3fT(q, x*)dq . 

Choosing c, = c3 = c, the above becomes 

(A8) - V"('T)T(q, x*)dq = c T(q, x*)dq 

+ T(q, x*)dq + 
c2fi 

T(q, x*)dq 

where the integral in the second square brackets on the RHS 
is negative [from (A4)] and the quantity in in the first square 
brackets on the RHS is positive [because of (A4) and (A6)]. 
So if we choose a small and positive c and a large enough 
and positive c2, the marginal risk premium will be negative. 
But if V is concave (to be shown below), this is a contra- 
diction. Therefore, T(q, x*) cannot be negative over any 
subinterval of (qo, qm). 

It remains to be seen that V is concave. This can be 
achieved by a suitable choice of parameters. Suppose that 
c and c2 have been chosen to make (A8) negative. With a 

possibly discontinuous second derivative (as c2 may not be 

equal to c), V is concave if it is differentiable such that V' 
is decreasing (Binmore, pp. 117). 

From (A7), it is clear that q,, and qj are the only two 

points where the utility function could be discontinuous and 
nondifferentiable. Thus, the V function is continuous every- 
where if V,[ir(q,)] = V2[ir(qi)] and V2[Tr(qj)] 

= 
V3[Tr(qj)]. 

This is assured by choosing a = 0, a2 = (b, - b,)IT(q,) + 
(c2 - c) i(qi)/2 

and a3 = a2 + (b2 - b3)r(qj) -+ (c - 

c2)7(qj)/2. As regards differentiability, the derivative of V 
within each of the subintervals is given by 

VI = b, - clr(q) for all q E (qo, qil 
V'(r) 

= V = b2 - c27(q) for all q E (q,, q,) 
V' = b3 - clr(q) for all q E [qj, qm). 

Here, V is differentiable at q, and qj (and hence differ- 
entiable everywhere) if V'(Ir) is continuous at q, and qj; i.e., 
V'(-r(q,)) = V'(Ir(qj)) and V'(Ir(qj)) = 

V'(r(q.)). So, for the c and c2 which make (A8) negative, choose 

b3 > c1r(qm) and bi, b2 to satisfy 

(A9) b2 - c2Tr(qa) = 
b3 

- 
cT(qj) b2 

= b3 + (c2- c)Tj(q1) 

and 

(A10) b1 - clT(q,) = b2- c27T(qi) Q b 
= b2 + (c - c2)T(qi). 

Notice that continuity and the fact that V' is decreasing in 
each subinterval mean that V' is decreasing on the entire 
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interval (qo, q,). Further, because b3 is picked to be greater 
than 

cir(qm), V' at q,. is positive. But that is the minimum 
value of V', and so V' is positive for all q. 

PROOF OF PROPOSITION 2: Suppose t(q, xo) has one root 

(say, q,) over the domain (qo, q,) such that t > 0 for q E 
(qo, q?) and t < 0 for q E (q,, q,). We need to show 

f?ot(y, xo)F, 
- 

0 for all q. Clearly fqq't(y, xo)F, O0. But 
fomot(y, xo)Fq = 0. So if for any q > q,, fqot(y, xo)Fq : 0, then t 

must be positive beyond q, in order for the integral to rise 
to zero at q,. But that contradicts our supposition that t is 
negative for q > q,. Hence fqot(y, xo)Fq, 0 for all q. The 

proof is similar for the other case where t(q, x) changes 
sign from negative to positive. 

PROOF OF PROPOSITION 3: As shown by (A3), the marginal 
risk premium is of the same sign as 

-feo 
U"(iT)T(q, x*)dq. 

Integrating by parts, this quantity is 

-I "(T(q.)) T(q, x*)dq + U'"(,) T(y, x*)dy dq 

which is positive if fo T(y, x*)dy 
_ 

0 for all q and negative 
if fqoT(y, x*)dy 

- 
0 for all q. 
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